Warning: Creating default object from empty value in /home/customer/www/susanschlenner.eu/public_html/wp-content/plugins/hubble-plugin/publications/lib/global/post_type.php on line 379
The microRNA-29 Family Dictates the Balance Between Homeostatic and Pathological Glucose Handling in Diabetes and Obesity – Adaptive Immunology Laboratory

The microRNA-29 Family Dictates the Balance Between Homeostatic and Pathological Glucose Handling in Diabetes and Obesity

Year
2016
Type(s)
Author(s)
James Dooley, Josselyn E. Garcia-Perez, Jayasree Sreenivasan, Susan M. Schlenner, Roman Vangoitsenhoven, Aikaterini S. Papadopoulou, Lei Tian, Susann Schonefeldt, Lutgarde Serneels, Christophe Deroose, Kim A. Staats, Bart Van der Schueren, Bart De Strooper, Owen P. McGuinness, Chantal Mathieu and Adrian Liston
Source
Diabetes
Url
http://diabetes.diabetesjournals.org/content/65/1/53
BibTeX
BibTeX

The microRNA-29 (miR-29) family is among the most abundantly expressed microRNA in the pancreas and liver. Here, we investigated the function of miR-29 in glucose regulation using miR-29a/b-1 (miR-29a)-deficient mice and newly generated miR-29b-2/c (miR-29c)deficient mice. We observed multiple independent functions of the miR-29 family, which can be segregated into a hierarchical physiologic regulation of glucose handling. miR-29a, and not miR-29c, was observed to be a positive regulator of insulin secretion in vivo, with dysregulation of the exocytotic machinery sensitizing beta-cells to overt diabetes after unfolded protein stress. By contrast, in the liver both miR-29a and miR-29c were important negative regulators of insulin signaling via phosphatidylinositol 3-kinase regulation. Global or hepatic insufficiency of miR-29 potently inhibited obesity and prevented the onset of diet-induced insulin resistance. These results demonstrate strong regulatory functions for the miR-29 family in obesity and diabetes, culminating in a hierarchical and dose-dependent effect on premature lethality.